





厦门大学物理科学与技术学院



### **Collaborators:**

Fudan U.: Liaoxin Sun, Hongxing Dong, Wei Xie, Long Zhang.....

SITP: Prof. Xuechu Shen

Tsinghua U.: Prof. Qihua Xiong

ECNU: Profs. Jian Wu, Hui Li et al

Westlake U.: Prof. A. Kavokin

#### Outline



## Introduction

## Whispering gallery resonators of ZnO

- •RT polariton lasing
- •RT parametric nonlinearity
- •Fano resonance of polaritons

## Formation of 1D polaritonic crystal ZnO

Band folding and engergy gap formation
Weak lasing of polariton condensates
1D Ising chain

## **Polariton condensate in a 3D confined structure**

•Evaporative cooling of polariton gas

## **Ultrafast dynamics of polariton condensate**

#### Introduction



## **Optical cavities:**







FP cavity

WG cavity

PC cavity



**Optical standing waves ---- optical modes** 

#### Introduction



**C-QED:** the atom-photon interaction in an optical cavity

→ highly efficient and controllable light-matter coupling





#### Excitons ---atom-like quasi-particles in semiconductors

Semiconductor optical cavities: controllable photon-exciton coupling

 $\rightarrow$  C-QED in solid states



Fundamental problem: Polariton BEC  $\rightarrow$  polariton laser etc.



## **Polariton Laser:** (1) coherent condensate of polariton Tc, Nc (2) low threshold Е UP cavity photon pump exciton reservior QW exciton phonon emission k// J. Kasprzak et al. Nature (2006) LP emission

Nc、Tc~de Broglie Wavelength~m\* coherent condensate at RT → laser device

# Polariton condensation in 2D cavities

GaAs/AIGaAs, CdTe/CdMgTe and perovskite microcavities



#### D. Snoke et al, Science (2002) J. Kasprzak et al. Nature (2006) R. Su, et al, Nature Physics (2020)

#### Superfluidity



A. Amo et al., Nature Phys. (2009), A. Amo et al., Science (2011)

#### **Quantized vortices**



F. Manni et al., Nature Comms (2012) K. G. Lagoudakis et al., Nature Phys. (2008) D. Sanvitto et al., Nature Photonics (2019)



# Polariton condensation in 2D cavities



#### Room-Temperature Polariton Lasing in All-Inorganic Perovskite Nanoplatelets

Rui Su,<sup>†</sup> Carole Diederichs,<sup>‡,§</sup> Jun Wang,<sup>||</sup> Timothy C. H. Liew,<sup>†</sup> Jiaxin Zhao,<sup>†</sup> Sheng Liu,<sup>†</sup> Weigao Xu,<sup>†</sup> Zhanghai Chen,<sup>||</sup> and Qihua Xiong<sup>\*,†,‡,↓</sup>



**Figure 3.** Power-dependent angle-resolved photoluminescence spectra. (a) Angle-resolved photoluminescence spectrum measured at 0.75  $P_{th}$ . Polaritons show a broad emission distribution at all angles. (b) Angle-resolved photoluminescence spectrum measured at 1.0  $P_{th}$ . The ground state near  $k_{\parallel} = 0$  exhibits a much stronger emission than other angles, indicating the onset of polariton lasing. (c) Angle-resolved photoluminescence spectrum measured at 1.3  $P_{th}$ . The ground state near  $k_{\parallel} = 0$  is massively occupied, experiencing a sharp increase of intensity along with a blueshift of peak energy.



# "Liquid light"

## Superfluidity of polaritons at RT



#### Sanvitto, Cohen et al, Nature Physics, 2017







## **ZnO** Wide band gap semiconductor (~3.3 eV) Large exciton binding energy (~60 meV)



Feng Li et al, Phys. Rev. Lett. 110, 196406 (2013)



# **ZnO**: Wurtzite crystalline structure → micro-rod

## $\rightarrow$ Naturally formed WG resonator



Cavity itself is active medium Large overlapping of cavity mode-exciton

strong photon-exciton coupling

ZnO nanorod



Polariton device at RT an ideal 1D system



# Preparation of the microcavities of ZnO Method: Vapour Phase transport



Carrying

gas

HX Dong, ZH Chen et al, *Appl. Phys. Lett.* 94, 173115 (2009) HX Dong, ZH Chen et al, *Appl. Phys. Lett.* 97, 223114 (2010) HX Dong, ZH Chen et al, *J. Mat. Chem.* 20, 5510 (2010)

# WGM in ZnO microwire





LX Sun, ZH Chen et al, Optics Express 18, 15372 (2010)



#### **Dispersion**



# **Polariton effect in ZnO WG cavity:**



Tetrapods



PL mapping

dispersion of k^c-axis



Uniform rods



Angular resolved

dispersion of k // c-axis

#### Dispersion

# Spectroscopy setups



#### The confocal micro-PL system



# dispersion of k^c-axis



LX Sun, ZH Chen et al, Phys. Rev. Lett. 100, 156403 (2008)



## **Spectroscopy setups**

#### Angular resolved micro-PL system

## dispersion of k // c-axis



LX Sun, ZH Chen et al, Phys. Rev. B83, 041302 (2011) (Rapid Comm.)

#### **Dispersion**



## dispersion of $k \perp c$ -axis



LX Sun, ZH Chen et al, *Phys. Rev. Lett.* 100, 156403 (2008) A. Trichet, LX Sun et al, *Phys. Rev.* B83, 041302 (2011) (Rapid Comm.)



# **RT lasing mechanism of ZnO:**

### photon lasing or polariton lasing?



**Detuning:**  $(\delta = E_C - E_X)$ 

The laser effect occurred along the WGM lower polariton branch.



## **Pump power dependence**



At P<sub>th</sub>, N<sub>3D</sub>~4×10<sup>18</sup> cm<sup>-3</sup>

Mott Density : 5.5×10<sup>19</sup> cm<sup>-3</sup>

#### Polariton Lasing of WGMs

# **Polariton condensate in k**<sub>//</sub> **space**

## with clear polariton dispersion

W Xie, ZH Chen et al, Phys. Rev. Lett. 108, 166401 (2012)





#### Polariton Lasing at high temperature



## **Polariton condensate at 500 K**



D Xu, ZH Chen et al, Appl. Phys. Lett. 104, 082101 (2014)

# **Degenerative parametric scattering**

# → Entangled polariton





#### **Optical nonlinearity**



### **Polariton parametric scattering**



W Xie, ZH Chen et al, Phys. Rev. Lett. 108, 166401 (2012)

#### Fano resonance



















SHG

Angle  $\phi$ 











YF Wang, ZH Chen et al, Phys. Rev. Lett. 118, 063602 (2017)



- Band engineering on polaritonic systems?
- Condensate in a

# modulated structure

# Introducing a periodic potential in the 1D ZnO polariton system



#### <u>Dispersion</u>



## Band structure of the polaritonic crystal:





# **Polariton condensates at** $\pi$ **states**





# "Weak lasing" of polariton

"Weak lasing" represents a particular phase in a dissipative bosonic system. It is characterized by a spontaneous phase-locking and self-organisation of localized bosonic condensates which minimizes the dissipation losses and favors the build-up of the condensates.





# **Polariton condensates in k-space**





## **Polariton condensates distribution in real space**



L Zhang, A. Kavokin, Y. Rubo, ZH Chen, et al, PNAS 1502666112 (2015)



#### research high lights

#### exchonics W eak lasing

*Proc. NatlA cad. Sci USA* 112, E1516 ±1519 (2015)

Polaritons in periodic potentials are useful for understanding the physics of many-body system s and exploring applications in optoelectronics. Recent experiments by Long Zhang, W eiX ie and an international collaboration from China, Russia, M exico, the USA and the UK suggest that an effect known as weak lasing in one-dimensional polaritons in superlattices has now been observed at room-temperature. A structure with one-dimensional periodicity was made by laying a ZnO microrod of hexagonal cross-section onto silicon corrugated with 1-µm-wide channels, with a period of 2 µm. The ZnO rod form s aw hispering-gallery mode resonator for the exciton polaritons, subject to a periodic potential along the length of the wire due to the adjacent structured silicon. Photolum in escence was used to investigate the structure when optically pumped at room temperature. Long-range phase coherence was observed and for strong pumping the spatial period of the condensate is twice that of the superlattice period. The authors state that previous work using G aA s did not confirm the period-doubling feature of weak lasing and they suggest that ZnO may yield more robust weak lasing.

NATURE PHOTONICS | VOL9 | MAY 2015 | www.nature.com/naturephotonics



### **1D Ising model---quantum simulation**









#### **Real space**











**Phase coupling** 

Polaritons condense into the minimum of Ising Hamiltonian:

$$H = -\sum_{ij} J_{ij} s_i s_j = -\sum_{ij} J_{ij} \cos(\theta_i - \theta_j)$$

Song Luo, ZH Chen et al, *Phys. Rev. Applied* **13**, 044052 (2020)

#### Evaporative cooling of cold atoms



Atoms inside the trap





MIT Sodium Trap September/October 1995 rf evaporation + 6ms free expansion





## **3D confined trap for polaritons**













## **Cooling mechanism?**







## **Semiclassical Boltzmann rate equation**

$$\frac{\partial n_{\rm R}}{\partial t} = P - \Gamma_{\rm R} n_{\rm R} - \sum_{\rm N,k} x A n_{\rm R}^{2} + B_{\rm N} n_{\rm R} n_{\rm N,k} + \frac{\partial n_{\rm N,k}}{\partial t} = x \left(A n_{\rm R}^{2} + B_{\rm N} n_{\rm R}\right) (n_{\rm N,k} + 1) - \Gamma_{\rm N,k} n_{\rm N,k} - n_{\rm N,k} \sum_{\rm N,k'} W_{N \to \rm N'} (n_{\rm N',k'} + 1) + (n_{\rm N,k} + 1) \sum_{\rm N,k} W_{\rm N' \to \rm N} n_{\rm N',k'} + \frac{\partial n_{\rm N,k}}{k \to k'} n_{\rm N',k'} + \frac{\partial n_{\rm N,k}}{k \to k} n_{\rm N',k'} + \frac{\partial n_{\rm N',k'}}{k \to k} + \frac{\partial n_{\rm N,k}}{k \to k} n_{\rm N',k'} + \frac{\partial n_{\rm N',k'}}{k \to k} + \frac{\partial n_{\rm N,k}}{k \to k} n_{\rm N',k'} + \frac{\partial n_{\rm N',k'}}{k \to k} + \frac{\partial n_{\rm N,k}}{k \to k} n_{\rm N',k'} + \frac{\partial n_{\rm N',k'}}{k \to k} + \frac{\partial n_{\rm N',k'}}{k \to k} + \frac{\partial n_{\rm N,k}}{k \to k} n_{\rm N',k'} + \frac{\partial n_{\rm N',k'}}{k \to k} + \frac{\partial n_{\rm N,k}}{k \to k} + \frac{\partial n_{\rm N,k}}{k \to k} + \frac{\partial n_{\rm N',k'}}{k \to k}$$



J Wang, ZH Chen et al, Phys. Rev. B 91, 165423 (2015)

#### Untrafast dynamics of exciton polaritons



#### Ultrafast dynamics of exciton polariton condensate has never been revealed before





#### **Bosonic cascade lasing of polarition in ZnO**



Schematic illustration of polariton dynamics in a Bosonic cascade.





#### Time lapes of exciton polariton dynamics at room temperature



#### **Time integrated**

Time lapse in femtosec scale

Fei Chen et al, Nano Lett. 22, 2023-2029 (2022).





#### **Dominant bosonic cascade process**

Fei Chen, Hui Li, Jian Wu, ZH Chen et al, Nano Lett. 22, 2023-2029 (2022).



#### **Femtosecond Polariton Switch at Room Temperature**



Fei Chen, Hui Li, Jian Wu and ZH Chen et al, PRL 129, 057402 (2022)



#### **Optically Controlled! 2 orders faster switching time!**



Fei Chen, Hui Li, Jian Wu and ZH Chen et al, PRL 129, 057402 (2022)

# A CONTRACTOR OF STATE

# Towards device application: electrical pumping





### **Room temperature Polariton LED**



Z Zhang, ZH Chen et al, Optics Express, 2017



# Summary I

- 1D polariton system
- Very strong coupling
- Polariton lasing at RT
- Parametric scattering of polariton
- Fano resonance of polaritons
- Weak lasing
- Evaporative cooling
- Ultrafast dynamics



# Thank you very much!