第九届全国高等学校 物理实验教学仪器评奖推荐书

自制多	文验仪	器名	称:	生物材料黏弹性教学实验仪				
实验表	数学中	心名	称:	复旦大学物理教学实验中心				
所	在	院	系:	物理系				
自制实验仪器负责人:								
研	发	团	队:	闻焱焱 卿淦 李爱萍 冀敏				
联系	电话	(手	九):	:13918627622(冀 敏)				
	((办公	室)	: 021-55665399				
邮			箱:	iimin01@fudan. edu. cn				

中国高校实验物理教学研究会 2016年1月

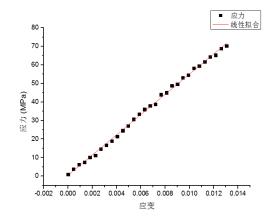
作品简介: (字数限 2000 字以内)

自制实验教学仪器的性能指标、台套数、作用、功能、特色优势、应用、推广等情况 的简要介绍

性能指标: 可测量的弹力范围 $0^{\sim}10N$,最小分度值 0.00001N,丝状材料的拉伸距离 $0^{\sim}20mm$,直流电动机启动电压为 1.0V,转速最大为 11r/min。

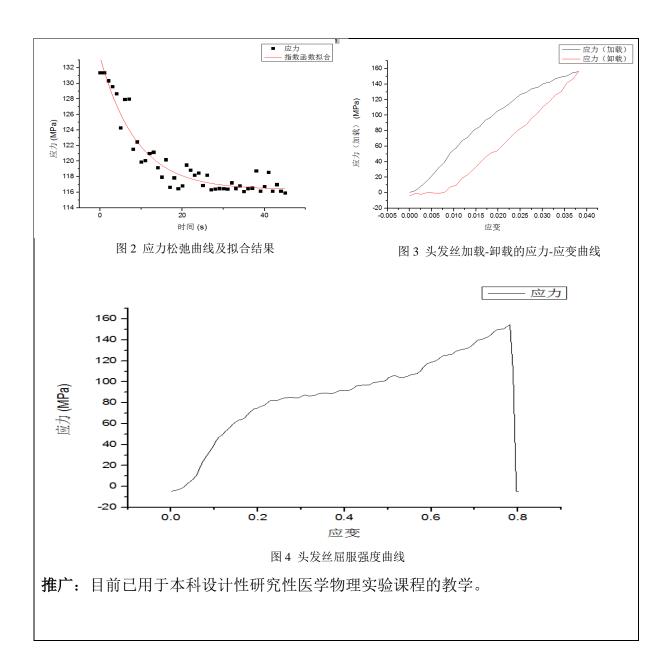
套数:一套。

作用:用于物理实验和医学物理实验的教学,可帮助学生理解黏弹性材料区别于弹性材料的特性,增加对黏弹性材料的认识,理解力传感器的原理,掌握力传感器的使用方法。


功能: 在弹性限度内测量生物材料丝状样品的杨氏模量、测量生物材料丝状样品的应力松弛曲线、测量生物材料丝状样品在加载-卸载过程中的应力-应变曲线、测量生物材料丝状样品的屈服强度,根据应力松弛曲线的松弛程度和加载-卸载过程的应力-应变曲线的滞后面积比来比较生物材料的黏弹性强弱。

特色优势:

- 1) 采用力传感器测量弹力,测量的精度更高,力的数值可连续采集;
- 2) 得到的数据很多,能完整记录拉伸过程中的弹力变化;
- 3) 实验流程简单,用时短;
- 4) 电脑通过蓝牙传输的方式采集数据,方便快捷:
- 5) 扩大了力传感器在物理实验中的应用,有一定的参考意义;
- 6) 性能稳定。


应用:

初步用于测量头发的黏弹性,包括测量头发在弹性限度内的杨氏模量大小(图 1),测量头发的应力松弛曲线(图 2),测量头发在加载-卸载过程中的应力-应变曲线(图 3)。以及测量头发丝的屈服强度(图 4)。

r			i
Equation	y = a + b*x		
Weight	No Weighti		
Residual Sum of	26.98455		
Pearson's r	0.99901		
Adj. R-Squ	0.99794		
		Value	Standard E
	Intercept	0.51953	0.34969
应力	Slope	5452.909	45.99452

图 1 杨氏模量实验数据拟合结

作品照片(3-5张)

