10P Publishing European Journal of Physics

Eur. J. Phys. 36 (2015) 045002 (10pp) doi:10.1088/0143-0807/36/4/045002

Experimental observation of solitary waves
in a new designed pendulum chain system

Changqing Zhu'~, Juanmian Lei’, Yecun Wu'~, Nan Li',
Da Chen' and Qingfan Shi'

!Experimental Center of Physics, Beijing Institute of Technology, Beijing 100081,
People’s Republic of China

2School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081,
People’s Republic of China

E-mail: leijm@bit.edu.cn and qfshil23 @bit.edu.cn

Received 6 November 2014, revised 22 February 2015 @
Accepted for publication 26 March 2015
Published 23 April 2015

CrossMark
Abstract
A new coupled pendulum chain system is developed to vividly simulate the
solitary solutions of the sine-Gordon (SG) equation. Transmission processes of
three kinds of solitons (kink, anti-kink and breather) are systematically observed
by using a high speed camera system. The solutions of the SG equation are
derived through deducing the net external torque of the pendulums. The
experimental data obtained are consistent with the theoretical calculation, which
verifies that the system designed is an effective device to demonstrate the
nonlinear behaviour of solitary waves in teaching and learning.

Online supplementary data available from stacks.iop.org/EJP/36/045002/
mmedia
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1. Introduction

Soliton, as a stable localized nonlinear wave and a well-known abstract concept, is still
covered by a mysterious veil for a majority of people though it is now firmly established after
a gestation period of more than one hundred years [1-4]. In fact, a soliton is a self-reinforcing
wave that maintains its shape while it travels at a constant velocity. In the other hand, a
soliton arises as the solution of a widespread class of weakly nonlinear dispersive partial
differential equations describing a physical system from a mathematical perspective [5].
Specifically, the sine-Gordon (SG) equation expressed by 0%u/ot> — d%u/dx®> + sin u = 0 is
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Figure 1. Photograph of the pendulum chain system.

a typical example of such equations in (1 + 1)-dimensional space—time. Besides, the SG
equation is associated with a completely integrable Hamiltonian system [6] and has three
soliton solutions, i.e., kink, anti-kink and breather [7-9]. Furthermore, the soliton solutions
are applied in many branches of physics, such as relativistic field theory [10], condensed
matter physics [11], nonlinear optics [12], etc. Although there are many excellent textbooks at
the introductory level [13—15] and a wealth of theoretical and numerical studies on the subject
of solitons [4], it is still difficult to understand for undergraduate students. One of the key
reasons is the scarcity of demonstration instruments for multifarious behaviours of solitary
waves in nonlinear physics teaching.

In general, a solitary wave can be experimentally observed and extensively studied by an
electrical or mechanical analogue. The electrical ones pick up nonlinear inductance and
capacitance to numerically obtain soliton waveforms or pulse shaping in silicon [16, 17].
While the mechanical ones mainly focus on the kink and anti-kink soliton solutions. For
instance, Dusuel et al construct a narrow kink in a strongly discrete chain of pendulums by
which they model the dynamics of the compacton kinks and the kink-like modes [18];
Nakajima et al fabricate a system of aluminum discs to investigate the effect of loss and the
effect of a distributed bias source [19]; Remoissenet manufactures a mechanical system in
which the pendulums are elastically coupled by a torsional spring, and observes a breather
soliton produced by a kink—antikink collision besides the collision of two kinks [4]. However,
these experimental analogues are neither intuitive enough, nor detailed analysis for both
torque of pendulums and derivation process of the SG equation. Therefore, it is necessary to
develop a more precise and intuitive apparatus to demonstrate the propagation mechanism of
solitary waves in physics study.

In this paper, we design a new mechanical analogue comprised of a pendulum chain
coupled by the springs. The kink, anti-kink and breather solitons are observed by tracking the
motion of each pendulum with a high-speed camera system. Based on the analysis of the
external torque, the standardized SG equation is deduced and solved. The experimental results
are in good agreement with the theoretical calculation. Teaching practice shows that the new
coupled pendulum chain system is an effective, intuitive and reliable device for the student to
view and understand the dynamic behaviours of solitons.
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Figure 2. Sketch of an initial disturbance.

2. Experiments

2.1. Experimental set-up

The machinery system established is shown in figure 1, in which a chain of similar pendulums
is mounted equidistantly along a horizontal axis, with adjacent pendulums being hinged with
the springs end by end. Each pendulum can freely undergo an entire 360° revolution about the
axle but cannot move sideways. Meanwhile, the movement of each pendulum can also drive
the motion of its next one. When an initial disturbance is a complete rotation of the first
pendulum, one can observe that this rotation result in a phase shift between the adjacent ones
as shown in figure 2. Thus, a solitary wave propagates forward collectively along the
transmission line, reflects at the opposite end, and travels again without any apparent mod-
ification of profile and velocity. For examining the properties of this localized wave, a high-
speed camera system is used to observe the running track of each pendulum. A video
demonstration of the results are given in the supplementary information, available at stacks.
iop.org/EJP/36/045002/mmedia.

Here, we first describe the phase and the location of a pendulum by defining its angle 8
relative to the plumb line and its location x relative to the ith pendulum at any time,
respectively. The sign convention of @ is indicated in the inset of figure 2. Afterwards, we
record the change of @ with time ¢ and location x, so as to reveal whether the shape and
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Figure 3. Swing angle € versus time ¢.
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Figure 4. Swing angle 0 varying with time ¢ and location x. The different symbols stand
for the six pendulums respectively.

velocity of solitary wave could be conserved. In experiment, the rotation of the chain is
clockwise, and the starting position is its natural droop state. The swing angle 0 of each
pendulum is recorded once every 50 milliseconds.

2.2. Observation of kink and anti-kink

With the help of the camera, we first observe the dependence of the angle of rotation € on
time ¢ for one pendulum in the chain. The experimental result is shown by the dots in figure 3,
where minus 6 means the swing angle of reversing rotation. After determining the motion
property of a pendulum, we can investigate whether other pendulums move in the same way.
Here, we may as well select six neighbouring pendulums.
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Figure 5. Photograph of a standing breather.
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Figure 6. Representation of breather oscillation.

Figure 4 is the experimental result depicted in (1 + 1)-dimensional space—time, where the
different symbols stand for different pendulums. Apparently, the fluctuations of six pendu-
lums have a time delay (lag effect) without an evident space dispersion (attenuation). So, all
pendulums rotate regularly and successively one after another and follow the same propa-
gation properties. In this case, a kink can be naturally observed. The kink, which is also called
topological soliton, appears due to an inherent degeneracy of the system ground state. More
specifically, a single kink can also be understood as a mathematical solution connecting two
nearest identical minima of the periodic on-site potential. The other case of anti-kink is the
same as the kink except their opposite direction. In summary, both the kink and the anti-kink
can move freely along the chain without loss of energy for dissipation [18].

2.3. Experimental observation of breather

The so-called breather, whose name originates from the behaviour of its profile, repeats
regularly oscillating upwards and downwards. It is a stationary-wave solution excited by a
Hamiltonian in the centre of chain system as in the photograph shown in figure 5. The pulse
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Figure 7. Force diagram for the neighbouring two pendulums rotating about the axle.

looks like breathing so that its relevant theory is called a breather mode, a breather soliton or a
spatially localized oscillating nonlinear mode [18, 20]. In the experiment, the dependence of
the angle of rotation @ on the location x of the pendulums is depicted in figure 6 in which X is
a dimensionless quantity of x (see equation (18)).

3. Theoretical analysis

3.1. Deducing the net external torque

For the sake of clarity, we sketch the geometric diagram of the neighbouring ith and (i + 1)th
pendulum in a moving moment as shown in figure 7. Here, L is the length of pendulum; a is
the equidistant length along the axle as well as the initial length of the spring; a is the
intersection angle between the spring and the horizontal axis. For facilitating the following
analysis, some auxiliary lines are depicted in the figure, where AC is parallel to OO’, AB
parallel to CD, OB parallel to O'D, and AC perpendicular to CD.

Let 7 represent the net external torque acting upon the ith pendulum. 7 is comprised of
the elastic torque and the gravitational torque, i.e.

T = Telastic T Tgravity> (D
where
Telastic = Telastic ((( + 1) = 1) — Tepastic (G — 1) = 1), (2)

and Teasic ((I + 1) — 7) means the elastic torque acting upon the ith pendulum by the (i + 1)th
one, so dose Tepagic (I — 1) — 0).

To deduce 7,5, We first analyse the elastic force Fyjugie acting upon a pendulum. We
may as well use the symbol b to express the length of AB and easily obtain

A .
b=oL sin(%), 3)

where A@; = 0; — 0, is the angle difference between the ith and (i + 1)th pendulum. Here 6;
is the ith pendulum’s angle of rotation. Then the net elongation of the spring is
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Al = Va? + b? —a. 4

According to Hooker’s law Fgj,gic = kAL, it can be rewritten as

Felastic = k[\/a2 + (2L sin (Aﬁi/2))2 - a], (5)

where k is the stiffness coefficient of the spring.
Furthermore, we resolve Fgj,qic into its two components F| and F;, as shown in figure 7.
Obviously

F| = Fyasiic sin @, and Fj; = Fagic COS @, (6)
where
. b
a = arcsmn| ———|. @)
Va* + b?

Actually, Fj, has no effect on the elastic torque and is negligible, so we have
Telastic (I + 1) — i) by simultaneous equations (5), (6), and (7), i.e.

Tetastic (G + 1) = i) = FL(AH,-)L cos (%) = kL[\/aZ + <2L sin (Ael-/z))z _ a]

2 sin (46;/2) L cos (ﬂ)
Ja + (2L sin (26,/2))? 2

sin (A6;)
\/1 + (2L sin (46,/2) /a)’

And similarly we can deduce that the elastic torque acting upon the ith pendulum by the (i — 1)
th one is

= kL?| sin (A6;) — ®)

Tetasic (0 = 1) = i) = KL2| sin (46,_,) — Sin 40:- , ©)
\/1 + (2L sin (46,1/2) /a)’
Putting equations (8) and (9) into (2), we achieve the following equation
Teastic = KL (sin A6; — sin Af;_; — ¢), (10)
where
. sin (A6)) sin (46;_1) an

) \/1 + (2L sin (46,/2)/a)’ ) \/1 +(2L sin(AHi_l/Z)/a)z.

Owing to the case of L > > a and the relatively large elastic coefficient of the spring
(k=195Nm™"), A6; should be small and sinAf; ~ A6, Accordingly, any term in
equation (11) is a higher-order infinitesimal relative to sin A#; or sin Af;_;. Thus we can omit
¢ and equation (10) can be simplified to

Tetastic = kL*(20; — 0=y — O;11). (12)
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Due to the angle 6; related to the position x, we can perform a Taylor expansion for the
denominator of ;. to high order as the following

20 a? 0% a’ 3’0
+

Oip1=0+ta— + —— + ——— 13
= ox 2 ox? " 3lox? (1
Substituting equation (13) into (12), the elastic torque can be expressed by
0%0
Telastic = _kLzaz_z- (14)

0x
Compared to the derivation process of elastic torque 7ejagic, the gravitational torque can
be easily obtained as follows
Taravity = ML sin 0, (15)

where mg is the gravity of one single pendulum, and L. is the distance from its mass centre to
the axle.
Finally, combining equations (1), (14) and (15), the net external torque is deduced as
ox?
Based on the expression of 7, we can further deduce the standardized SG equation so as
to reveal the propagation mechanism of solitary waves.

t=mgL, sin 6 — kL’a (16)

3.2. Deducing the standardized SG equation

Newton’s second law for rotation is used to analyse the motion of a single pendulum, and we
have

0
0%t
where [ is the moment of inertia. Substitute equation (16) into (17), and transform the result
into the dimensionless form. Eventually, we achieve the standardized form of SG equation

2 2 L L
90 _ 90 L Gno=0, whereT= 8% anax = |78 (1)
or?  0x>2 I a*kl?

Equation (18) can be solved by inverse spectral transform method [21]. Its kink solution
can be obtained as

=122, (17)

6’=—ﬂ+4aIctanexp[a(X—vT)/Vl —v2]+¢, (19)

where o = +1 stands for the kink’s so-called fopological charge, ¢ is a constant, and v is the
kink’s velocity that cannot exceed its maximum value v, (the sound velocity) [18]. The
signs + of ¢ represent clockwise and anticlockwise rotation corresponding to a kink and an
anti-kink, respectively. Based on equation (19), the calculated results for the change of swing
angle with time and location are shown by the solid lines in figures 3 and 4.

Another solution of the SG equation is the breather as [4]

J1 = ? cos (i)
1 — & cos (@) sech (\/1——a)2x) sin (wr) |, (20)

[0

60 = 4 arctan
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Figure 8. Bion’s evolution with time sequency.

which describes a nonlinear state with internal frequency . Based on equation (20), the
calculated result for the change of swing angle with location is shown by the solid line in
figure 6. In the limit of low frequencies, @ < < 1, the breather can be qualitatively treated as
a weakly coupled pair of kink and anti-kink [18]. In other words, the breather solution is equal
to the collision of a kink and an anti-kink solution by combining equations (19) and (20).
Hence it is also called a bion, and the numerical simulation for its evolution with time
sequency is shown in figure 8.

4. Conclusions

A mechanical analogue of the SG equation is experimentally and theoretically investigated.
Three solutions of the SG equation are calculated by analysing the elastic torque and grav-
itational torque of pendulums; various behaviours of solitary waves on a Josephson line are
demonstrated on the mechanical transmission line. In conclusion, the newly designed pen-
dulum chain system can be accepted as a structural basis for viewing and understanding the
dynamic behaviours of complex nonlinear systems.
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