建立在原子发光物理特性基础上

的核外电子跃迁的运动学描述以及一些重要推论

青岛理工大学 索榕卿 李诗曼 邓剑平* 陈畅*

QTECH ShanDong of China

摘 要:本文通过实验测定获得的汞原子发光的物理特性参数,运用类比的方法推演了汞原子的核外电子能 级跃迁过程的运动学描述,以及一些涉及原子结构模型的重要推论。由于现行的量子物理学理论不能给出该 过程的具体描述,因此本文的推导过程主要以经典物理学的电磁理论和波动理论为基础。 关键词:原子发光 核外电子 能级跃迁 原子结构

1. 历史背景

自 20 世纪初以来,对原子层面的物理研究逐步建立了以 N.玻耳为代表的原子核 外电子轨道能量量子化的原子核式模型(玻耳模型),该模型中 a)的原子核位于原子 的中心,原子核具有原子总质量的 99%以上,这一点由著名的卢瑟福 a 粒子衍射实验 的结果推出; b)原子的核外电子被描述为绕原子核高速旋转,用其高速旋转产生的离 心作用来抵抗原子核中质子正电荷的吸引作用,使原子具有稳定的结构,由于与经典 理论的电荷变速运动会辐射电磁波的实验结论不符,为此附加了轨道电子能量量子化 和轨道电子旋转的角动量满足量子化条件的约束条件,后由德布罗意提出的物质波理 论以驻波形式加以了解释;

原子的受激辐射过程,在我们现有的知识 体系中被量子论描述为原子的核外电子在受 激过程中量子化的吸收能量,以完成从基态轨 道向激发态轨道的跃迁,由于激发态不稳定, 受激轨道电子将会自发地跃回基态同时发出 频率为v的电磁辐射,

 $h\nu = E_{\underline{x}\underline{x}\underline{x}} - E_{\underline{x}\underline{x}}$

量子理论始终没有明确在该受激过程中 轨道电子的动力学和运动学解释,究其原因是 量子化理论中认为轨道电子的运动是以几率 波形式存在的,因此对于轨道电子来说不再有 经典意义上的轨道的概念。

但是只要我们对量子化理论的细节进行 图1简化的汞原子能级图 客观的分析就会发现现行理论的基础仍存在缺陷,即使量子理论已经做出了我们无法 准确地测定核外轨道电子的运动参数的结论,而我们确信当今的科学有必要通过这一 物理过程给我们提供的宏观可测的信息,给出一种简洁清晰、符合物理逻辑、更接近 客观真实的物理描述。

2. 实验设计:

下面,我们来再现一个经过改造的近代物理实验,利用棱镜摄谱仪和迈克尔逊干涉仪组合测定高压汞灯中各色光(公认波长值为 $\lambda_{g_{\pm}4}$.047×10⁻⁷m、 $\lambda_{g_{\pm}4}$.358×10⁻⁷m、 $\lambda_{g_{\pm}5}$.769×10⁻⁷m和 $\lambda_{g_{\pm}5}$.791×10⁻⁷m)的相干长度。

2.1 实验设备:

本实验在光学暗室中进行,按下图图示位置在光学减震平台上架设以下设备: 高压汞灯 (南京工学院电子管厂), BWPL型小型棱镜摄谱仪(杭州光学仪器厂), CWSM-100型麦克尔逊干涉仪(浙江光学仪器厂), T聚透镜, LM601S型CCD 光强分布测量仪(南京浪博科教仪器厂), YB4249B型示波器(江苏扬中电子仪器 厂)。

2.2 实验原理简述:

实验设备布置如图 2 照片所示: 高压汞灯 🛆 出的复色光, 经摄谱仪 🖻 的色散棱 镜分光为单色光谱线, 再经中心波长调节手轮调节设置和观谱镜的出射光阑过滤为单 色光, 该单色光再进入迈克耳逊干涉仪 🖸 分解为两束相干光, 相干光再经会聚透镜 🖸 将干涉像汇聚于光强测量仪 🖻 的线状 CCD 上, 最后利用示波器 🖻 来观测 CCD 处 随着迈克耳逊干涉仪的可移动反光镜的位置变化, 所产生的干涉图样的光强分布变 化, 以测定汞光各单色光的空间相干长度。

图 2 实验设备布置图

2.3 实验设备调整简述:

- 1. 调整高压汞灯 A出光口的高度与摄谱仪 B入射狭缝高度齐平;
- 2. 打开摄谱仪 B入射狭缝前的挡光滑板,取下哈密顿光阑;
- 3. 调整入射狭缝上的螺旋调节手轮,将入射狭缝宽度调节为1.00 mm;
- 4. 取下目镜组的观谱镜,将可调光阑调节为 1.5~2.0 mm,依次调节中心波长调 节手轮至 λ_{%[±]}4.047×10⁻⁷m、λ_{≦[±]}4.358×10⁻⁷m、λ_{%[±]}5.461×10⁻⁷m、λ_{ğ[±]}5.769 ×10⁻⁷m 和 λ_{ğ[±]}5.791×10⁻⁷m,使相应的单色光通过观谱镜光阑射出;
- 5. 调整迈克尔逊干涉仪 C的高度,使其光路部分与摄谱仪出射光方向水平一致;
- 调整迈克尔逊干涉仪对零手轮,将可移动反射镜的一维坐标调节到 33.0mm 附近,使其两个分光光路基本等长;
- 分别调整迈克尔逊干涉仪两个反射镜后的调节螺钉,将色光的反射像调节重合,再用固定反光镜的垂直微调和水平微调仔细调整,直至观察到等厚干涉条纹;
- 8. 调整会聚透镜 D将干涉像汇聚于光强测量仪 E的线状 CCD 上;
- 利用示波器 E 来观测 CCD 处随着迈克耳逊干涉仪的可调节反光镜的位置变化,所产生的干涉图样的光强分布变化,以确定各单色光的空间相干长度。

图 3 用 SONY F717 拍摄到的汞灯色光的干涉图样

图 4 用示波器观察到的 CCD 俘获的光强波形

图 5 迈克耳逊干涉仪工作原理图(俯视光路图和右侧视等厚干涉原理图)

迈克耳逊干涉仪的光路原理如图所示。图 5 中反射镜 M₁ 是固定的, M₂可在导轨 上沿法线方向移动, 即 M₂ 相对于 G₁ 的半反射膜面的距离是可以改变的。当 M₁'与 M₂的镜面成一定夹角β时,两镜面之间形成一空气劈尖,则来自 M₁与 M₂的反射光 线将发生等厚干涉。

下面我们来测定高压汞灯各单色光的相干长度。

- 调整 M₂反光镜位置到与 M₁等距位置附近,调整 M₁反光镜后的法线调整螺钉, 使镜面法线与入射光 I 形成一定夹角β,利用示波器显示屏来观测产生的等厚干涉 图样的光强分布;
- 调整微动手轮使 M₂移动,随着迈克耳逊干涉仪的可调节反光镜的位置变化,在示 波器上刚刚能够观测到等厚干涉的波形曲线处,暨出现等厚干涉条纹的 M₂初始位 置坐标 X₁,记入数据表格 1;
- 旋转微动手轮读出过视野中心的等厚干涉条纹的级数,每改变50级等厚干涉条纹, 记录 M₂ 对应的位置坐标 X_i;
- 旋转微动手轮,直至在示波器上观察到的等厚干涉对应的波形即将消失的位置, 结束实验测定;
- 5. 用逐差法处理实验数据,获得有效的实验数据;
- 6. 获得干涉条纹的总级数 N、高压汞灯的各单色光的相干长度 L。

下面的表格中: λ_{黄光1}, λ_{黄光11}分别为 5.769×10⁻⁷m 和 5.791×10⁻⁷m 双黄色光谱 线、λ_{绿光}为 5.461×10⁻⁷m 绿色光谱线、λ_{蓝光}为 4.358×10⁻⁷m 蓝色光谱线、λ_{紫光}为 4.047 ×10⁻⁷m 紫色光谱线。

表1干涉会	永 纹级数	与干涉仪	可移动反	え光镜的-	一维坐标	的关系数	姑		单位:	mm
级数	0	50	100	150	200	250	300	350	400	450
λ _{黄光 I、II}	31.38498	31.40204	31.41676	31.43149	31.44587					
$\lambda_{\ { m sl}{ m k}}$	31.19575	31.23299		31.26319	31.27724	31.29114	31.30495	31.31874	31.33239	31.34614
$\lambda_{ m int}$	31.29725	31.32724	31.34162	31.35334	31.36471	31.37596	31.38712	31.39813	31.40918	31.42020
$\lambda_{ m kh}$	31.33189	31.34627	31.35766	31.36884	31.37933	31.38985	31.40023	31.41048	31.42090	31.43116
级数	500	550	600	650	700	750	800	850	900	950
$\lambda_{\ arpi lpha}$	31.35976	31.37348	31.38708	31.40075	31.41422		31.44172		31.46926	31.48285
$\lambda_{ m int}$	31.43124	31.44218	31.45332	31.46433	31.47543	31.48640	31.49734	31.50859	31.51052	31.53043
λ _{紫光}	31.44148	31.45169	31.46199	31.47226	31.48231	31.49248	31.50263	31.51278	31.52306	31.53315
级数	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450
$\lambda_{\mbox{\tiny \mathcal{K}}}$	31.49670	31.51032	31.52402	31.53784	31.55059	31.56497	31.57924	31.59295	31.60659	31.62036
$\lambda_{ m int}$	31.54135	31.55227	31.56323	31.57415	31.58491	31.59579	31.60673	31.61750	31.62875	31.63994
$\lambda_{ m $ \pm h $}$	31.54341	31.55354	31.56397	31.57411	31.58434	31.59462	31.60479	31.61521	31.62562	31.63578
级数	1500	1550	1600	1650	1700	1750	1800	1850	1900	1950
$\lambda_{\mbox{\tiny \mathcal{B}},\mbox{\tiny \mathcal{L}}}$	31.63408	31.64785	31.66154	31.67531		31.70309	31.71683	31.73042	31.74417	31.75783
$\lambda_{ m int}$	31.65089	31.66187	31.67304	31.68407	31.69501	31.70598	31.71695	31.72801	31.73875	31.74976
$\lambda_{ m $ \pm 2.5 \ mm $ \pm 2.5 \ $	31.64593	31.65602	31.66627	31.67657	31.68667	31.69676	31.70693	31.71699	31.72710	31.73719
级数	2000	2050	2100	2150	2200	2250	2300	2350	2400	2450
$\lambda_{\mbox{\tiny \mathcal{k}}}$	31.77159	31.78525	31.79901	31.81276	31.82654	31.84003	31.85403	31.86787	31.88157	31.89539
$\lambda_{ m int}$	31.76079	31.77286	31.78312	31.79414		31.81615	31.82704	31.83814	31.84910	31.86007
$\lambda_{ m ~gh}$	31.74753	31.75784	31.76803	31.77814	31.78821		31.80855	31.81893	31.82909	31.83927
级数	2500	2550	2600	2650	2700	2750	2800	2850	2900	2950
$\lambda_{ m sch}$	31.90916	31.92295	31.93684	31.95063	31.96449	31.97846	31.99232	32.00618	32.02004	32.03382
$\lambda_{ m int}$	31.87108	31.88227	31.89342	31.90448	31.91556	31.92663	31.98780	31.94854	31.95954	31.97051
$\lambda_{ m kh}$	31.84951	31.86003	31.87038	31.88055	31.89070	31.90096	31.91155			
级数	3000	3050	3100	3150	3200	3250	3300	3350	3400	3450
λ $_{ m sch}$	32.04770	32.06148	32.07571	32.08949	32.10319	32.11699	32.13051	32.14457	32.15828	32.17198
$\lambda_{ m int}$	31.98154	31.99248	32.00334							
级数	3500	3550	3600	3650	3700	3750	3800	3850	3900	3950
$\lambda_{\ \mathrm{GR}}$		32.19928	32.21303	32.22670	32.24043	32.25381		32.28106	32.29447	32.30809
级数	4000	4050								
$\lambda_{\ \mathrm{GR}}$	32.32178	32.33539								

说明:上表中个别数据缺失,这种缺失是特指在转动微动手轮观测计数到 50 级条纹时,显示波纹已调过标记位置,由于迈克尔逊干涉仪有很大的"回空",故放弃该记录点,而改为连续记录 100 条的反光镜位置,并将数据记入下一个 50 级条纹改变的位置,而当前位置以"---"记录。为了不影响下面的数据处理过程,缺失项"---"用前后相 邻数据做平均内插法处理获得替代数据带入后续计算。

由于在整个测量过程中,迈克尔逊干涉仪的可移动反光镜的一维坐标 X 是随干涉条纹级数的变化而变化的,在下面获得高压汞灯色光波长 $\lambda = 2(X_{i+n} - X_i)/n$ 的过程中,我们对上述数据采用了逐差法的处理方法。

表 2 用逐差法处理获得汞光的波长。

λ _{黄光 I、II}	n=100	5.8900E-04	5.8220E-04					
$\lambda_{\ \ensuremath{arget}{\mathcal{R}}}$	n=2000	5.4930E-04	5.4889E-04	5.4908E-04	5.4913E-04	5.4918E-04	5.4925E-04	5.4940E-04
$\lambda_{ { m in} { m H}}$	n=1400	4.4181E-04	4.4076E-04	4.4047E-04	4.4016E-04	4.3984E-04	4.3979E-04	4.3967E-04
$\lambda_{ m sh}$	n=1300	4.1225E-04	4.1068E-04	4.1015E-04	4.0949E-04	4.0929E-04	4.0937E-04	4.0888E-04
$\lambda_{\ { m gle} { m h}}$	n=2000	5.4947E-04	5.4976E-04	5.4988E-04	5.5027E-04	5.5049E-04	5.5060E-04	5.5069E-04
$\lambda_{ m int}$	n=1400	4.3973E-04	4.3930E-04	4.3940E-04	4.3924E-04	4.4076E-04	4.3956E-04	4.3963E-04
$\lambda_{ m sh}$	n=1300	4.0862E-04	4.0838E-04	4.0815E-04	4.0786E-04	4.0758E-04	4.0803E-04	4.0825E-04
$\lambda_{\ { m GMR}}$	n=2000	5.5078E-04	5.5097E-04	5.5100E-04	5.5116E-04	5.5169E-04	5.5165E-04	5.5260E-04
$\lambda_{ { m in} { m H}}$	n=1400	4.3972E-04	4.3937E-04	4.5217E-04	4.3959E-04	4.3964E-04	4.3971E-04	4.3979E-04
$\lambda_{ m sh}$	n=1300	4.0831E-04	4.0825E-04	4.0792E-04	4.0805E-04	4.0791E-04	4.0829E-04	4.0788E-04
$\lambda_{\ { m gle} { m h}}$	n=2000	5.5202E-04	5.5127E-04	5.5162E-04	5.5169E-04	5.5162E-04	5.5155E-04	5.5143E-04
$\lambda_{ m int}$	n=1400	4.4017E-04	4.4073E-04	4.4099E-04	4.4119E-04	4.4161E-04	5.1293E-04	4.4086E-04
$\lambda_{ m sh}$	n=1300	4.0794E-04	4.0795E-04	4.0832E-04	4.0860E-04	4.0822E-04	4.0782E-04	4.0797E-04
$\lambda_{\ { m GMR}}$	n=2000	5.5149E-04	5.5139E-04	5.5123E-04	5.5072E-04	5.5060E-04	5.5064E-04	5.5030E-04
$\lambda_{ { m in} { m H}}$	n=1400	4.4093E-04	4.4091E-04	4.4071E-04	4.4059E-04	4.4047E-04		
$\lambda_{ m sh}$	n=1300	4.0865E-04						
$\lambda_{\ arpsilon lpha}$	n=2000	5.5026E-04	5.5019E-04	5.5014E-04				

单位: mm

说明:表格中高压汞灯的双黄光谱 A ##LII 由于拍频叠加作用影响,观测到的连续干涉条纹较少。

为了从一个侧面证明这个测量过程的有效性,我们来分析对比本实验测出的高压 汞灯的色光波长实验测量值 \alpha_{测量}与色光波长理论值 \alpha_{理论}(标准值)的相对偏差。

表3色光波长实验测量值λ测量与色光波长理论值λ元论(公认值)的相对偏差

实验测量项目	汞光谱各色光波长	汞光谱各色光波长	测量相对偏差	
	本实验测量值 λ (mm)	理论值λ (mm)	E (%)	
λ _{黄光 I、II}	5.8560E-04	(5.790,5.770) E-04	1.1	
λ $_{ m egin{smallmatrix} \chi m m m m m m m m m m m m m $	5.5062E-04	5.461E-04	0.8	
$\lambda_{ m int}$	4.4279E-04	4.358E-04	1.6	
$\lambda_{ m \ km}$	4.0859E-04	4.047E-04	1.0	

说明: 汞灯色光波长的理论值来自饭田修一所著的《物理学常用数表》(中译本) 1979 年版 122 页,

下面,我们再通过上面实验所获得的测量数据,推导出一些我们更感兴趣的其他数据,即本实验获得的高压汞灯各色光的最小相干长度 Lmin 和相应的各色光波列最小持续时间 t 的数据。

表4 本实验获得的高压汞灯各色光的最小相干长度 Lmin 和最短波列持续时间 t。

项目	干涉起始 位置(mm)	干涉终结 位置(mm)	观察到的条 纹级数 n	可移动反射镜 M ₂ 的移动距离 S (mm)	本实验获得的色 光最小相干长度 L _{min} =2S (mm)	波列最小 持续时间(s) t = L _{min} /c
λ _{黄光 I、II}	31.38498	31.44587	200	0.06089	0.12178	4.062E-13
$\lambda_{\ { m \#}{ m H}}$	31.19575	32.33539	4050	1.13964	2.27928	7.602E-12
$\lambda_{ m int}$	31.29725	32.00334	3100	0.70609	1.41218	4.710E-12
$\lambda_{ m sh}$	31.33189	31.91155	2800	0.57966	1.15932	3.866E-12

说明:光(在真空或空气中)的传播速度 $c = 2.998 \times 10^{11} (mm/s)$ 来自《物理学常用数表》319页。

3. 建立在原子发光物理特性基础上的核外电子跃迁的运动学描述

在经典波动学理论中,描述机械波的物理特性参数有波速、频率和振幅,其中, 波速是由传播介质的物理特性所决定的物理参数,而频率和振幅则是由振子(波源) 的振动特性来决定的。在经典电磁理论中,光是由与传播方向垂直、且相互正交的电 矢量和磁矢量交变构成的电磁波,光在不同介质中的传播速度由介质的物理特性决 定,而光波的频率和振幅由光源(本实验中即由汞原子的核外受激电子的运动)的特 性来决定。

图 6 汞原子发光电矢量示意图

在本实验中,除去前面已经说明的汞光谱的黄色光外,从对其他色光的实验获得的干涉条纹级数 n=2800~4050,波列的最小持续时间 t_{min}=(3.866~7.602) ×10⁻¹²秒。 据此,我们可以建立起作为发出各色光光波波列的电磁波波源------受激核外电子的运动过程,即:

- A. 汞原子受激辐射过程中原子核外电子从高能态向基态跃迁的物理过程,是该受激电子在一个持续时间为t~10⁻¹²s, n~2800-4050的多周期的径向持续振动;
- B. 通过整个干涉测量过程中干涉现象的连续性,可以间接确定:受激电子在上述径向持续振动过程中,从原子核至该核外特定受激电子的即时空间位置矢径 r 的空间角α, β, γ 的变化一定小于 90°, 即 |α_t α₀| ≤ 90°, |β_t β₀| ≤ 90°, |γ_t γ₀| ≤ 90°
 (其中, α₀, β₀, γ₀分别为初始位置矢径角坐标, α_t, β_t, γ_t分别为该受激振动过程中任意时刻的位置矢径角坐标)。

4. 一个重要的推论和几个目前不能确定的问题:

这个实验的结果,不是我们以前在量子论框架下所认识的那样:外界电子轰击核

外电子,核外电子获得能量由低能态向高能态的跃迁,而后再由高能态向较低能态回 跃同时释放光子(电磁辐射能量)的一个孤立的过程。

表 4 关于汞原子的一些数据

汞原子最外层 电子轨道半径 r (m)	电子质量 m _e (kg)	真空介电常数 ε ₀ (C/V m)	电子电荷 e(C)	最外层核外电子的轨 道运动速度 V(m/s)	最外层核外电子的 轨道运动周期 T(s)
1.57E-10	9.10950E-31	8.85418E-12	1.60219E-19	1.27E+06	7.76E-16

说明: 1。汞原子轨道半径数据取自《物理学常用数表》P57,电子质量数据取自《物理学常用数表》P319,真空 介电常数数据取自《物理学常用数表》P319; 2。最外层核外电子的轨道运动速度和最外层核外电子的轨道 运动周期按照玻耳模型类氢原子的处理方法计算得出。

表4中利用了玻耳的原子核式模型,计算了汞原子中最外层核外电子的轨道运动 周期 T(~10⁻¹⁶ 秒),当然内层电子的轨道运动周期会更短。但是,我们实验测定的汞原 子发光的波列最小持续时间 t(~10⁻¹² s)远长于汞原子最外层核外电子的轨道运动周期 T 的 10⁴ 倍。反之,即玻耳原子核式模型却得出在同样的时间里,轨道电子(其中必 定有一些是参与上述试验过程的受激核外电子)要绕原子核高速旋转 10⁴ 周以上。

显然,这两个过程是相悖的。依据物理学是一门以科学实验来检验科学理论为基本准则的学科,我们的实验推论是:

- 原子核的核外电子的空间位置矢径 r 在一个相对较长的时间处于该原子核的一个 特定的空间(以其原子核为中心,且<90°角坐标空间)范围内,受激核外电子 至少在一个持续时间 t (~10⁻¹²s)作着数千周的周期径向持续振动,辐射出特定波 长的电磁波;
- 其他核外电子随原子核的热运动而随机运动,辐射出与其绝对温度相关的电磁波 (黑体辐射);
- 任何带电粒子(电荷)的空间运动都会向其周围空间产生电磁辐射(能量释放),
 这一点同样适用于在原子线度上运动的原子核中的质子和原子核外的核外电子。

实际上,在近百年的时间里,玻耳的核式定态轨道模型一直在强迫我们接受一种 非常矛盾的体系,在量子力学的薛定谔方程解出的原子核外电子的"电子云"分布模 型使我们对原子结构认识的矛盾更加激化,我们应该正视这种矛盾的实质:即原子的 核外电子是不是在绕着原子核在做着高速的旋转?实际上,我个人觉得量子力学解出 的"电子云"分布模型,也许本身就是对核外电子绕核高速旋转的一种否定。

分析我们上述的实验过程和数据处理的结果,仍然不能确定的几个问题,或我们 下一步要解决的主要问题是:

- 库仑作用在原子线度是否有效?如果库仑作用在原子线度下依然有效,则是否还 有我们尚未认识的 X 作用部分(或全部)抵消了库仑作用?
- 受激核外电子所做的周期径向持续振动是否为简谐振动?根据核外电子在能级跃 迁的过程中吸收和释放能量的过程,这个过程不能简化为受到指向平衡位置的弹 性回复力作用下的一个阻尼震荡。这对具体分析受激核外电子的动力学特征极为 重要。

在进一步的研究中,我们的设想是用更多的光源进行对比实验,以期发现这一过 程更多的特征参数,使我们的描述能更加精细和准确。

作者简介:

索榕卿 22岁

青岛理工大学理学院 2015 级应用物理系学生,拥有国家级奖项两项,省级奖励四项,获得国家专利局授权的实用新型专利一项。

邓剑平 46岁 高级工程师

1982 年陕西师范大学物理系物理专业毕业,从事物理和近代物理实验教学 26 年。获得国家 专利局授权的发明专利 1 项,实用新型专利 2 项。

中长期研究目标:用实验的方法证明自由电子不具有波动性。

联系方式:

通信地址:山东省青岛市黄岛区嘉陵江东路 777 号青岛理工大学新校区 联系人:邓剑平 邮编: 266520 电话: 13396486390 电子信箱: 541902119@qq.com